Machine Learning and Diagnostic Processes with Neuropsychological Assessment: an Integrative Review

Mariana Costa Biermann, Clara Monte Arruda, Leonardo Carneiro Holanda

Abstract


Machine learning tools have the potential to assist in diagnostic processes and in empirical research, and have become popular in the international literature, but their development is still embryonic in Brazilian context. This study aimed to analyze the use of machine learning as an auxiliary mechanism in cases with neuropsychological assessments. Therefore, an integrative review was carried out, searching articles published and indexed in the SciELO, PePsic, LILACS, BVS, PubMed, MedLine, APA PsycNET and Science Direct databases, using the terms “machine learning” AND “avaliação neuropsicológica” AND “diagnóstico” in Portuguese and the terms “machine learning” AND “neuropsychological assessment” AND “diagnosis” in English. The final sample consisted in 31 articles published in English only. The analyzed studies demonstrated the adequate identification of different diagnoses even based on subtle differentiations. The algorithms used considered information resulting from psychometric tests, neuroimaging, clinical and family history, as well as tests that included physiological and, in some cases, genetic biomarkers. It is noteworthy that the synthesis in this study demonstrates the potential to minimize scientific gap on the development of neuropsychology and diagnostic processes in Brazilian context in order to assist in planning and conducting future studies.


Keywords


Machine Learning; Diagnosis; Neuropsychology; Statistical Data Interpretation; Literature Review

References


Ang, T. F., An, N., Ding, H., Devine, S., Auerbach, S. H., Massaro, J., Joshi, P., … Lin, H. (2019). Using Data Science to Diagnose and Characterize Heterogeneity of Alzheimer’s Disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, 264-271. doi: https://doi.org/10.1016/j.trci.2019.05.002

Armañanzas, R., Alonso-Nanclares, L., Kastanaskaite, A., Sola, R. G., Bielza, C., Larrañaga, P., … DeFelipe, J. (2013). Machine Learning Approach for the Outcome Prediction of Temporal Lobe Epilepsy Surgery. PLoS One, 8(4), 1-9. doi: https://doi.org/10.1371/journal.pone.0062819

Ashendorf, L., Alosco, M. L., Bing-Canar, H., Chapman, K. R., Martin, B., Chaisson, C. E., ... Stern, R. A. (2018). Clinical utility of select neuropsychological assessment battery tests in predicting functional abilities in dementia. Archives of Clinical Neuropsychology, 33(5), 530-540. doi: https://doi.org/10.1093/arclin/acx100

Bak, N., Ebdrup, B., Oranje, B., Fagerlund, B., Jensen, M., Hansen, L., … Nielson, M. (2017). Two Subgroups of Antipsychotic-Naive, First-Episode Schizophrenia Patients Identified With a Gaussian Mixture Model on Cognition and Electrophysiology. Translational Psychiatry, 7(4), 1-8. doi: https://doi.org/10.1038/tp.2017.59

Battista, P., Salvatore, C., & Castiglioni, I. (2017). Optimizing Neuropsychological Assessments for Cognitive, Behavioral and Functional Impairment Classification: A Machine Learning Study. Behavioural Neurology, 2017, article 185090, 1-19. doi: https://doi.org/10.1155/2017/1850909

Besga, A., Gonzaeles, I., Echeburua, E., Savio, A., Ayerd, B., Madrigal, J, L., … Leza, J. C. (2015). Discrimination Between Alzheimer’s Disease and Late Onset Bipolar Disorder Using Multivariate Analysis. Frontiers in Aging Neuroscience, 7, article 231, 231-240. doi: 10.3389/fnagi.2015.00231/full

Bhagyashree, S. I. R., Nagaraj, K., Prince, M., Fall, C, H., & Krishna, M. (2017). Diagnosis of Dementia by Machine Learning Methods in Epidemiological Studies: A Pilot Exploratory Study from South India. Social Psychiatry and Psychiatric Epidemiology, 53(1), 77-86. doi: https://doi.org/10.1007/s00127-017-1410-0

Bone, D., Bishop, S. L., Black, M. P., Goodwin, M. S., Lord, C., & Narayanan, S. S. (2016). Use of Machine Learning to Improve Autism Screening and Diagnostic Instruments: Effectiveness, Efficiency, and Multi‐Instrument Fusion. Journal of Child Psychology and Psychiatry, 57(8), 927-937. doi: https://doi.org/10.1111/jcpp.12559

Bruun, M., Koikkalainen, J., Baroni, M., Gjerum, L., Lemstra, A. W., Remes, A. M., … Mecocci, P. (2018). Evaluating Combinations of Diagnostic Tests to Discriminate Different Dementia Types. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 10, 509-518. doi: https://doi.org/10.1016/j.dadm.2018.07.003

Chandler, C., Foltz, P. W., Cohen, A. S., Holmlund, T. B., Cheng, J., Bernstein, J. C., ... Elvevåg, B. (2020). Machine learning for ambulatory applications of neuropsychological testing. Intelligence-Based Medicine, 1, 100006. doi: https://doi.org/10.1016/j.ibmed.2020.100006

Chang, T. S., Coen, M. H., Rue, A. L., Jonaitis, E., Koscik, R. L., Hermann, B., & Sager, M. A. (2012). Machine Learning Amplifies the Effect of Parental Family History of Alzheimer’s Disease on List Learning Strategy. Journal of the International Neuropsychological Society, 18(3), 428-439. doi: https://doi.org/10.1017/S1355617711001834

Chu, W., Huang, M., Jian, B., Hsu, C., & Cheng, K. (2016). A Correlative Classification Study of Schizophrenic Patients with Results of Clinical Evaluation and Structural Magnetic Resonance Images. Behavioural Neurology, 2016, article 7849526, 1-11. doi: https://doi.org/10.1155/2016/7849526

Costa, A. B., & Zoltowski, A. P. C. (2014). Como escrever um artigo de revisão sistemática. In Koller, S. H., de Paula Couto, M. C. P., & Von Hohendorff, J. (Orgs.). Manual de produção científica (pp. 55-70). Porto Alegre, RS: Penso Editora.

Crippa, A., Salvatore, C., Molteni, E., Mauri, M., Salandi, A., Trabattoni, S., ... Agostoni, C. (2017). The Utility of a Computerized Algorithm Based on A Multi-Domain Profile of Measures for the Diagnosis of Attention Deficit/Hyperactivity Disorder. Frontiers in psychiatry, 8, article 189, 1-10. doi: 10.3389/fpsyt.2017.00189

Cui, Y., Liu, B., Luo, S., Zhen, X. Fan, M., Liu, T., … Jiang, T. (2011). Identification of Conversion from Mild Cognitive Impairment to Alzheimer’s Disease Using Multivariate Predictors. PloS one, 6(7), 1-10. doi: https://doi.org/10.1371/journal.pone.0021896

Dauwan, M., Zande, J. J. V., Dellen, E. V., Sommer, I. E., Scheltens, P., Lemstra, A. W., & Stam, C. J. (2016). Random Forest to Differentiate Dementia with Lewy Bodies from Alzheimer’s Disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 4, 99-106. doi: https://doi.org/10.1016/j.dadm.2016.07.003

De Marco, M., Beltrachini, L. Biancardi, A., Frangi, A. F., & Venneri, A. (2017). Machine-learning Support to Individual Diagnosis of Mild Cognitive Impairment Using Multimodal MRI and Cognitive Assessments. Alzheimer Disease & Associated Disorders, 31(4), 278-286. doi: https://doi.org/10.1097/WAD.0000000000000208

Fuermaier, A. B., Fricke, J. A., Vries, S. M., Tucha, L., & Tucha, O. (2018). Neuropsychological assessment of adults with ADHD: A Delphi consensus study. Applied Neuropsychology: Adult, 26(4), 340-354. doi: https://doi.org/10.1080/23279095.2018.1429441

Galvão, T. F., Pansani, T. S. A., & Harrad, D. (2015). Principais Itens para Relatar Revisões Sistemáticas e Meta-Análises: a Recomendação PRISMA. Epidemiologia e Serviços de Saúde, Brasília, 24(2), 335-342. doi: 10.5123/S1679-49742015000200017

Gardner, J. (2019). Artificial Intelligence and Machine Learning Algorithms for Informing the Diagnostic Process of Mild Cognitive Impairment and Dementia. Archives of Clinical Neuropsychology, 34(6), 838-838. doi: https://doi.org/10.1093/arclin/acz035.06

Haller, S., Missonier, H. F., Rodriguez, C., Deiber, M. P., Nguyen, D., Gold, G., … Giannakopoulos, P. (2013). Individual Classification of Mild Cognitive Impairment Subtypes by Support Vector Machine Analysis of White Matter DTI. American Journal of Neuroradiology, 34(2), 283-291. doi: https://doi.org/10.3174/ajnr.A3223

Hazin, I., Fernandes, I., Gomes, E., & Garcia, D. (2018). Neuropsicologia no Brasil: Passado, Presente e Futuro. Estudos e Pesquisas em Psicologia, 18(4), 1137-1154. Retrieved from https://www.e-publicacoes.uerj.br/index.php/revispsi/article/view/42228/29298

Hua, X., Ching, C. R., Mezher, A., Gutman, B. A., Hibar, D. P., Bhatt, P., ... Leow, A. D. (2016). MRI-Based Brain Atrophy Rates in ADNI Phase 2: Acceleration and Enrichment Considerations for Clinical Trials. Neurobiology of aging, 37, 26-37. doi: https://doi.org/10.1016/j.neurobiolaging.2015.09.018

Khanna, S., Fernandéz, D. D., Iyappan, A., Emon, M. A., Apitius, M. H., & Fröhlich, H. (2018). Using Multi-Scale Genetic, Neuroimaging and Clinical Data for Predicting Alzheimer’s Disease and Reconstruction of Relevant Biological Mechanisms. Scientific reports, 8(1), article 11173, 1-13. doi: https://doi.org/10.1038/s41598-018-29433-3

König, A., Satt, A., Sorin, A., Hoory, R., Toledo, R. H., Derreumaux, A., … Verhey, F. (2015). Automatic Speech Analysis for The Assessment of Patients with Predementia and Alzheimer’s Disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 1(1), 112-124. doi: https://doi.org/10.1016/j.dadm.2014.11.012

Legnani, L. K. B., & de Souza, T. P. (2021). O perfil da produção científica neuropsicológica no Brasil: uma revisão integrativa. Espaço para Saúde, 22. doi: https://doi.org/10.22421/1517-7130/es.2021v22.e739

Liang, S., Vega, R., Kong, X., Deng, W., Wang, Q., Ma, X., … Li, M. (2017). Neurocognitive Graphs of First-Episode Schizophrenia and Major Depression Based on Cognitive Features. Neuroscience Bulletin, 34(2), 312-320. doi: https://doi.org/10.1007/s12264-017-0190-6

Mamédio, C., Santos, D. C., Andrucioli, C., Pimenta, M., Roberto, M., & Nobre, C. (2007). The PICO strategy for the research question construction and evidence search. Rev. Latino-Am Enfermagem., 15(3), 508-511. doi: https://doi.org/10.1590/S0104-11692007000300023.

Moradi, E., Hallikainen, I., Hanninen, T., & Tohka, J. (2017). Rey’s Auditory Verbal Learning Test Scores Can Be Predicted from Whole Brain MRI in Alzheimer’s Disease. NeuroImage: Clinical, 13, 415-427. doi: https://doi.org/10.1016/j.nicl.2016.12.011

Ogawa, M., Sone, D., Beheshti, I., Maikusa, N., Okita, K., Takano, H., & Matsuda, H. (2019). Association Between Subfield Volumes of The Medial Temporal Lobe and Cognitive Assessments. Heliyon, 5(6), 1-7. doi: https://doi.org/10.1016/j.heliyon.2019.e01828

Patel, M. J., Andreescu, C., Price, J. C., Eldeman, K. L., Reynolds III, C. F., & Aizenstein, H. J. (2015). Machine Learning Approaches for Integrating Clinical and Imaging Features in Late‐Life Depression Classification and Response Prediction. International Journal of Geriatric Psychiatry, 30(10), 1056-1067. doi: https://doi.org/10.1002/gps.4262

Pereira, T., Lemos, L., Cardoso, S., Silva, D., Rorigues, A., Santana, I., … Guerreiro, M. (2017). Predicting Progression of Mild Cognitive Impairment to Dementia Using Neuropsychological Data: A Supervised Learning Approach Using Time Windows. BMC medical informatics and decision making, 17(1), 110-125. doi: https://doi.org/10.1186/s12911-017-0497-2

Pettersson-Yeo, W., Benetti, S., Marquand, A., Dell’acqua, F., Williams, S., Allen, P., … Prata, D. (2013). Using Genetic, Cognitive and Multi-Modal Neuroimaging Data to Identify Ultra-High-Risk and First-Episode Psychosis at The Individual Level. Psychological medicine, 43(12), 2547-2562. doi: https://doi.org/10.1017/S003329171300024X

Primi, R. (2018). Avaliação Psicológica no Século XXI: de Onde Viemos e para Onde Vamos. Psicologia: Ciência e Profissão, 38(3), 87-97. doi: https://doi.org/10.1590/1982-3703000209814

Ramos, A. A., & Hamdan, A. C. (2016). O Crescimento da Avaliação Neuropsicológica no Brasil: Uma Revisão Sistemática. Psicologia: Ciência e Profissão, 36(2), 471-485. doi: https://doi.org/10.1590/1982-3703001792013

Rhodius-Meester, H. F., Liedes, H., Koikkalainen, J., Wolfsgruber, N. C. P., Peters, O., Jessen, F., & Rami, L. (2018). Computer-Assisted Prediction of Clinical Progression in the Earliest Stages of AD. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 10, 726-736. doi: https://doi.org/10.1016/j.dadm.2018.09.001

Ritchie, L. J., & Tuokko, Holly. (2011). Clinical Decision Trees for Predicting Conversion from Cognitive Impairment No Dementia (CIND) to Dementia in a Longitudinal Population-Based Study. Archives of clinical neuropsychology, 26(1), 16-25. doi: https://doi.org/10.1093/arclin/acq089

Sampaio, R. F., & Mancini, M. C. (2007). Estudos de Revisão Sistemática: Um Guia para Síntese Criteriosa da Evidência Científica. Revista Brasileiro Fisioterapia, 11(1), 83-89. doi: https://doi.org/10.1590/S1413-35552007000100013

Santos, H. G. D., Nascimento, C. F. D., Izbicki, R., Duarte, Y. A. D. O., & Chiavegatto Filho, P. D. A. (2019). Machine Learning para Análises Preditivas em Saúde: Exemplo de Aplicação para Predizer Óbito em Idosos de São Paulo, Brasil. Cadernos de Saúde Pública, 35(7), 1-16. doi: https://doi.org/10.1590/0102-311X00050818

Segovia, F., Bastin, C., Salmon, E., Górriz, J. M., Ramírez, J., & Phillips, C. (2014). Combining PET Images and Neuropsychological Test Data for Automatic Diagnosis of Alzheimer’s Disease. PLoS One, 9(2), 1-8. doi: https://doi.org/10.1371/journal.pone.0088687

Seixas, F. L., Zadrozny, B., Laks, J., Conci, A., & Saade, D. C. M. (2014). A Bayesian Network Decision Model for Supporting the Diagnosis of Dementia, Alzheimer S Disease and Mild Cognitive Impairment. Computers in biology and medicine, 51,140-158. doi: https://doi.org/10.1016/j.compbiomed.2014.04.010

Souza, M. T., Silva, M. D., & Carvalho, R. (2010). Revisão integrativa: o que é e como fazer. Einstein (São Paulo), 8(1), 102–106. doi: https://doi.org/10.1590/S1679-45082010RW1134

Squeglia, L. M., Ball, T. M., Jacobus, J., Brumback, T., McKenna, B. S., Sorg, S. F., … Paulus, M. P. (2016). Neural Predictors of Initiating Alcohol Use During Adolescence. American journal of psychiatry, 174(2), 172-185. doi: https://doi.org/10.1176/appi.ajp.2016.15121587

Van Calster, B., Wynants, L., Timmerman, D., Steyerberg, E. W., & Collins, G. S. (2019). Predictive analytics in health care: how can we know it works?. Journal of the American Medical Informatics Association, 26(12), 1651-1654. doi: https://doi.org/10.1093/jamia/ocz130

Wallert, J., Westman, E., Ulinder, J., Annerstedt, M., Terzis, B., & Ekman, U. (2018). Differentiating Patients at the Memory Clinic with Simple Reaction Time Variables: A Predictive Modeling Approach Using Support Vector Machines and Bayesian Optimization. Frontiers in aging neuroscience, 10, 144. doi: https://doi.org/10.3389/fnagi.2018.00144

Weakley, A., Williams, J. A., Schmitter-Edgeccombe, M., & Cook, D. J. (2015). Neuropsychological Test Selection for Cognitive Impairment Classification: A Machine Learning Approach. Journal of Clinical and Experimental Neuropsychology, 37(9), 899-916. doi: https://doi.org/10.1080/13803395.2015.1067290

Wu, M., Passos, I. C., Bauer, I. E., Lavagnino, L., Cao, B., Soares, J. C., & Mwang, B. (2016). Individualized Identification of Euthymic Bipolar Disorder Using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and Machine Learning. Journal of affective disorders, 192, 219-225. doi: https://doi.org/10.1016/j.jad.2015.12.053




DOI: https://doi.org/10.18256/2175-5027.2022.v14i1.4568

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Mariana Costa Biermann, Clara Monte Arruda, Leonardo Carneiro Holanda

ISSN 2175-5027

Licença Creative Commons
Este obra está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional.

BASES DE DADOS E INDEXADORES

 DOAJ.jpg Periódicos CAPES
latindex.jpg
 
dialnet.png
 
REDIB
Diadorim.jpg
    SIS
circ.png