Information Quality as an Antecedent for the use of Technology: Analysis of Youtube Social Media from the Perspective of Undergraduate Students in the Accounting Course

Mariele Castro dos Santos, Carla Milena Gonçalves Fernandes, Anderson Betti Frare, Alexandre Costa Quintana

Abstract


Social media, like YouTube, are increasingly present in people’s daily lives, no different in the educational context. However, some aspects may be favorable to the acceptance of these technologies, such as the quality of information. In this perspective, the study aims to analyze the influence of information quality as an antecedent of the use of technology, specifically related to YouTube social media with regard to undergraduate students in the Accounting course at a federal university. The theoretical framework is based on two aspects: (i) quality of information; (ii) the acceptance of technology in educational contexts, specifically about the technology acceptance model. After reviewing the literature, seven hypotheses were created. There was a survey, with the sending of electronic questionnaire and a final sample of 58 students. For data analysis, the structural equation modeling was used. In addition to the analysis of direct effects (established hypotheses), an analysis of indirect effects was carried out. The findings point to a direct effect on the following relationships: (H1) quality of information in perceived ease of use; (H3) perceived ease of use in perceived utility; (H5) perceived utility in attitude; (H7) attitude in behavioral intention. As practical, the relevance of using such media as a complementary means of learning for Accounting students is highlighted. Due to theoretical implications, the study contributes by listing the relevance of information quality as an antecedent for the acceptance of technology.


Keywords


Quality of information; Social media; YouTube

References


Abdullah, F., & Ward, R. (2016). Developing a general extended technology acceptance model for e-learning (Getamel) by analysing commonly used external factors. Computers in Human Behavior, 56, 238-256. https://doi.org/10.1016/j.chb.2015.11.036

Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: a replication. MIS quarterly, 16(2), 227-247. https://doi.org/10.2307/249577

Agarwal, N., & Yiliyasi, Y. (2010). Information quality challenges in social media. Anais de International Conference on Information Quality, Little Rock, The United of States of America, 15.

Al-Rahimi, W. M., Othman, M. S., & Musa, M. A. (2013). Using TAM model to measure the use of social media for collaborative learning. International Journal of Engineering Trends and Technology, 5(2), 90-95.

Balakrishnan, V., & Gan, C. L. (2015). Students’ learning styles and their effects on the use of social media technology for learning. Telematics and Informatics, 33(3), 808-821. https://doi.org/10.1016/j.tele.2015.12.004

Beux, M. C., Laimer, V. R., & Laimer, C. G. (2012). Qualidade no atendimento: uma alternativa para obter a satisfação dos clientes de uma instituição financeira. Revista de Administração IMED, 2(2), 106-117. https://doi.org/10.18256/2237-7956/raimed.v2n2p106-117

Bido, D. S., & Silva, D. (2019). SmartPLS 3: especificação, estimação, avaliação e relato. Administração: Ensino e Pesquisa, 20(2), 488-536. https://doi.org/10.13058/raep.2019.v20n2.1545

Chintalapati, N., & Daruri, V. S. K. (2017). Examining the use of YouTube as a learning resource in higher education: scale development and validation of TAM model. Telematics and Informatics, 34(6), 853-860. https://doi.org/10.1016/j.tele.2016.08.008

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Psychology Press.

D’Aquila, J. M., Wang, D., & Mattia, A. (2019). Are instructor generated YouTube videos effective in accounting classes? A study of student performance, engagement, motivation, and perception. Journal of Accounting Education, 47, 63-74. https://doi.org/10.1016/j.jaccedu.2019.02.002

Davis, F. D. (1989). Usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Dehghani, M., Niaki, M. K., Ramezani, I., & Sali, R. (2016). Evaluating the influence of YouTube advertising for attraction of young customers. Computers in human behavior, 59, 165-172. https://doi.org/10.1016/j.chb.2016.01.037

Detlor, B., Hupfer, M. E., Ruhi, U., & Zhao, L. (2013). Information quality and community municipal portal use. Government Information Quarterly, 30(1), 23-32. https://doi.org/10.1016/j.giq.2012.08.004

Diamantopoulos, A., & Siguaw, J. (2006). Formative versus reflective indicators in organizational measure development: a comparison and empirical illustration. British Journal of Management, 17(4), 263-282. https://doi.org/10.1111/j.1467-8551.2006.00500.x

Dumpit, D. Z., & Fernandez, C. J. (2017). Analysis of the use of social media in higher education institutions (HEIs) using the technology acceptance model. International Journal of Educational Technology, 14(5), 1-16. https://doi.org/10.1186/s41239-017-0045-2

Even, A., & Shankaranarayanan, G. (2007). Utility-driven assessment of data quality. ACM SIGMIS Database: the Database for Advances in Information Systems, 38(2), 75-93. https://doi.org/10.1145/1240616.1240623

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/bf03193146

Hair Jr., J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM): second edition. Los Angeles: Sage.

Holtzblatt, M., & Tschakert, N. (2011). Expanding your accounting classroom with digital video technology. Journal of Accounting Education, 29(2-3), 100-121. https://doi.org/10.1016/j.jaccedu.2011.10.003

Jung, I., & Lee, Y. (2015). YouTube acceptance by university educators and students: a cross-cultural perspective. Innovations in education and teaching international, 52(3), 243-253. https://doi.org/10.1080/14703297.2013.805986

Khan, M. L. (2017). Social media engagement: what motivates user participation and consumption on YouTube?. Computers in Human Behavior, 66, 236-247. https://doi.org/10.1016/j.chb.2016.09.024

Kim, K-S., Sin, S-C. J. & Yoo-Lee, E. Y. (2014). Undergraduates’ use of social media as information sources. College & Research Libraries, 75(4), 442-457. http://dx.doi.org/10.5860/crl.75.4.442

Lee, D. Y., & Lehto, M. R. (2013). User acceptance of YouTube for procedural learning: an extension of the technology acceptance model. Computers & Education, 61, 193-208. https://doi.org/10.1016/j.compedu.2012.10.001

Lim, K., Kilpatrick, C., Storr, J., & Seale, H. (2018). Exploring the use of entertainment-education YouTube videos focused on infection prevention and control. American Journal of Infection Control, 46(11), 1218-1223. https://doi.org/10.1016/j.ajic.2018.05.002

Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: when “good” indicators are bad and “bad” indicators are good. Psychological Methods, 4(2), 192-211. https://doi.org/10.1037/1082-989X.4.2.192

Malaquias, R. F., Malaquias, F. F., & Hwang, Y. (2018). Understanding technology acceptance features in learning through a serious game. Computers in Human Behavior, 87, 395-402. https://doi.org/10.1016/j.chb.2018.06.008

Marangunić, N., & Granić, A. (2015). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95. https://doi.org/10.1007/s10209-014-0348-1

Martins, J. G. da S., Bohnenberger, M. C., & Froehlich, C. (2018). Fatores que contribuem para a retenção de profissionais das gerações X e Y nas organizações: análise comparativa entre acadêmicos do curso de Administração. Revista de Administração IMED, 8(1), 78-98. https://doi.org/10.18256/2237-7956.2018.v8i1.2506

Martins, A. S. R., Quintana, A. C., Frare, A. B., & Gomes, D. G. de. (2019). Meta-síntese da publicação científica de tecnologia da informação no ensino superior contábil. Revista de Administração da IMED, 9(2), 51-72. https://doi.org/10.18256/2237-7956.2019.v9i2.3321

Moghavvemi, S., Sulaiman, A., Jaafar, N. I., & Kasem, N. (2018). Social media as a complementary learning tool for teaching and learning: the case of YouTube. The International Journal of Management Education, 16(1), 37-42. https://doi.org/10.1016/j.ijme.2017.12.001

Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: the role of modality and contiguity. Journal of Educational Psychology, 91(2), 358-368. https://doi.org/10.1037/0022-0663.91.2.358

Nitzl, C. (2016). The use of partial least squares structural equation modelling (PLS-SEM) in management accounting research: directions for future theory development. Journal of Accounting Literature, 37, 19-35. https://doi.org/10.1016/j.acclit.2016.09.003

Oliveira, D., Walter, S. A., & Bach, T. M. (2012). Critérios de validade em pesquisas em estratégia: uma análise em artigos publicados no EnAnpad de1997 a 2010. Revista de Administração Mackenzie, 13(6), 225-254. http://dx.doi.org/10.1590/S1678-69712012000600010

Pires, P. J., & Costa Filho, B. A. (2008). Fatores do índice de prontidão e tecnologia (TRI) como elementos diferenciadores entre usuários e não usuários de internet banking e como antecedentes do modelo de aceitação de tecnologia (TAM). Revista de Administração Contemporânea, 12(2), 429-456. http://dx.doi.org/10.1590/S1415-65552008000200007

Porter, C. E., & Donthu, N. (2005). Using the technology acceptance model to explain how attitudes determine internet usage: the role of perceived access barriers and demographics. Journal of Business Research, 59(9), 999-1007. https://doi.org/10.1016/j.jbusres.2006.06.003

Rondan-Cataluña, F. J., Arenas-Gaitán, J., & Ramírez-Correa, P. E. (2015). A comparison of the different versions of popular technology acceptance models: a non-linear perspective. Kybernetes, 44(5), 788-805. https://doi.org/10.1108/K-09-2014-0184

Scherer, R., Siddiq, F., & Tondeur, J. (2020). All the same or different? Revisiting measures of teachers’ technology acceptance. Computers & Education, 143, 103656. https://doi.org/10.1016/j.compedu.2019.103656

Shachak, A., Kuziemsky, C., & Petersen, C. (2019). Beyond TAM and UTAUT: future directions for HIT implementation research. Journal of Biomedical Informatics, 100, 103315. https://doi.org/10.1016/j.jbi.2019.103315

Silva, J. C. P., Paiva, L. E. B., & Lima, T. C. B. (2019). Entre competências e informações: um estudo com gestores de tecnologia da informação. Revista de Administração IMED, 9(1), 3-27. https://doi.org/10.18256/2237-7956.2019.v9i1.3268

Suki, N. M., & Suki, N. M. (2011). Exploring the relationship between perceived usefulness, perceived ease of use, perceived enjoyment, attitude and subscribers’ intention towards using 3G mobile services. Journal of Information Technology Management, 22(1), 1-7.

To, W. M., Lai, L. S., & Leung, V. W. (2019). Technology acceptance model for the intention to use advanced business application software among Chinese business school students. Australasian Journal of Educational Technology, 35(4). https://doi.org/10.14742/ajet.4942

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1) 157-178. https://doi.org/10.2307/41410412

Xiao, M., Wang, R., & Chan-Olmsted, S. (2018). Factors affecting YouTube influencer marketing credibility: a heuristic-systematic model. Journal of Media Business Studies, 15(3), 188-213. https://doi.org/10.1080/16522354.2018.1501146

Yang, K. C., Huang, C. H., Yang, C., & Yang, S. Y. (2017). Consumer attitudes toward online video advertisement: YouTube as a platform. Kybernetes, 46(5), 840-853. https://doi.org/10.1108/K-03-2016-0038

Yousafzai, Y. Y., Foxall, G. R., & Pallister, J. G. (2007). Technology acceptance: a meta-analysis of the TAM: part one. Journal of Modelling in Management, 2(3), 251-280. https://doi.org/10.1108/17465660710834453

Zheng, Y., Zhao, K., & Stylianou, A. (2012). The impacts of information quality and system quality on users’ continuance intention in information-exchange virtual communities: an empirical investigation. Decision Support Systems, 56(1), 513-524. https://doi.org/10.1016/j.dss.2012.11.008




DOI: https://doi.org/10.18256/2237-7956.2020.v10i2.4013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Mariele Castro dos Santos, Carla Milena Gonçalves Fernandes, Anderson Betti Frare, Alexandre Costa Quintana

Revista de Administração IMED (RAIMED)               ISSN: 2237-7956                Programa de Pós-Graduação em Administração (PPGA/Atitus)

Atitus Educação - Business School – www.imed.edu.br – Rua Senador Pinheiro, 304 – Bairro Vila Rodrigues – 99070-220 – Passo Fundo/RS – Brasil Tel.: +55 51 4004-4818

Licença Creative Commons

Esta obra está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional.