Influência das cinzas de bagaço de cana-de-açúcar nas propriedades mecânicas do concreto

Liliane Rodrigues Congro da Rocha, Marina Martins Mennucci, Patricia Hatsue Suegama

Resumo


As cinzas do bagaço da cana-de-açúcar (CBC) vêm sendo utilizadas como material sustentável em substituição do cimento e empregadas na produção de concreto e argamassas. Esse trabalho avaliou por meio de ensaios de resistência mecânica, absorção de água a possibilidade de utilizar as CBC (secas e peneiradas) na produção de concreto armado, substituindo parcialmente o cimento em 0, 10, 20 %  para efeitos comparativos, e analisou o ensaio de resistência mecânica em corpos de prova de pastas cimentícias e corpos de prova de concreto. Foi realizado a caracterização química das cinzas após a secagem e peneiração, e verificou-se que essas cinzas são ricas em sílica. Apesar do aumento da absorção de água nos corpos de prova de concreto, a resistência à compressão obteve um aumento de 30 % com a substituição de 10 % de cimento por CBC e substituindo 20 % de cimento por CBC, a resistência à compressão obteve o mesmo valor da amostra sem CBC, além de que após comparação com ensaios nos corpos de prova de pastas cimentícias, pode-se concluir que as CBC atuam no concreto mais como filler do que como material pozolânico.


Palavras-chave


Cinzas do bagaço de cana-de-açúcar (CBC); Concreto; Resistência mecânica; Sustentabilidade; Filler

Texto completo:

PDF

Referências


ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5733: Cimento Portland de alta resistência inicial. 1991.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 248: Determinação da composição granulométrica. 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9778: Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica. 2005a.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7211: Agregados para concreto-Especificação Aggregates for concrete-Specification. 2005b.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739: Concreto - Ensaio de compressão de corpos-de-prova cilíndricos. 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16.605: Cimento Portland e outros materiais em pó — Determinação da massa específica. 2017.

ALMEIDA, F. C. R. et al. Use of sugarcane bagasse ash sand (SBAS) as corrosion retardant for reinforced Portland slag cement concrete. Construction and Building Materials, v. 226, p. 72–82, 30 nov. 2019.

ARENAS-PIEDRAHITA, J. C. et al. Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash. Construction and Building Materials, v. 105, p. 69–81, 2016.

ARIF, E.; CLARK, M. W.; LAKE, N. Sugar cane bagasse ash from a high efficiency co-generation boiler: Applications in cement and mortar production. Construction and Building Materials, v. 128, p. 287–297, 2016.

BARBOSA FILHO, M. P.; PRABHU, A. S. Aplicação de Silicato de Cálcio na Cultura do Arroz Introdução. Embrapa Acre-Circular Técnica, 2002.

BRASIL. Lei Federal no 12.305. Política Nacional de Resíduos Sólidos. Brasília: Edições Câmara, 2010.

CARASEK, H. Argamassas. Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais. 2. ed. São Paulo: IBRACON, 2010. p. 893–941.

CASTALDELLI, Vinicius N. et al. Preliminary studies on the use of sugar cane bagasse ash (SCBA) in the manufacture of alkali activated binders. Key Engineering Materials. Trans Tech Publications Ltda, p. 689- 698, 2014.

DOMÍNGUEZ, A. O. Análise comparativa de inibidores de corrosão na água de poro e no concreto armado para aço carbono CA- 50. 2016.

GIRARDI, R. Estudo da variabilidade do cimento Portland que abasteceu o mercado do Rio Grande do Sul no período de 1992 a 2012.GIRARDI, R. Estudo da variabilidade do cimento Portland que abasteceu o mercado do Rio Grande do Sul no período de 1992 a 2012. 2014.

HABERT, G. et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, 2020.

ISAIA, G. C. Concreto: Ciência e Tecnologia. 1 edicao ed. São Paulo: IBRACON, 2011.

LE, D. H.; SHEEN, Y. N.; LAM, M. N. T. Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. Construction and Building Materials, v. 185, p. 138–147, 10 out. 2018.

LIMA, S. A. et al. Analysis of the mechanical properties of compressed earth block masonry using the sugarcane bagasse ash. Construction and Building Materials, v. 35, p. 829–837, 2012.

MEHTA, P. K.; MONTEIRO, P. J. M.; CARMONA FILHO, A. Concreto: estrutura, propriedades e materiais. 1. ed. São Paulo: PINI, 1994.

MORETTI, J. P.; NUNES, S.; SALES, A. Self-compacting concrete incorporating sugarcane bagasse ash. Construction and Building Materials, v. 172, p. 635–649, 30 maio 2018.

NEVILLE, A. M. Propriedades do Concreto. 5. ed. Porto Alegre: Bookman, 2015.

PATEL, J. A.; RAIJIWALA, D. B. Experimental study on use of sugar cane bagasse ash in concrete by partially replacement with cement. International Journal of Innovative Research in Science, Engineering and Technology, v. 4, n. 4, p. 2228–2232, 2015.

PAYÁ, J. et al. Sugar-cane bagasse ash (SCBA): Studies on its properties for reusing in concrete production. Journal of Chemical Technology and Biotechnology, v. 77, n. 3, p. 321–325, 2002.

PAYÁ, J. et al. Bagasse ash. Waste and Supplementary Cementitious Materials in Concrete, p. 559–598, 2018.

PEREIRA, A. et al. Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceramics International, v. 41, n. 10, p. 13012–13024, 2015.

RAJASEKAR, A. et al. Durability characteristics of Ultra High Strength Concrete with treated sugarcane bagasse ash. Construction and Building Materials, v. 171, p. 350–356, 2018.

RÍOS-PARADA, V. et al. Characterization and use of an untreated Mexican sugarcane bagasse ash as supplementary material for the preparation of ternary concretes. Construction and Building Materials, v. 157, p. 83–95, 30 dez. 2017.

SETAYESH GAR, P.; SURESH, N.; BINDIGANAVILE, V. Sugar cane bagasse ash as a pozzolanic admixture in concrete for resistance to sustained elevated temperatures. Construction and Building Materials, v. 153, p. 929–936, 2017.




DOI: https://doi.org/10.18256/2358-6508.2021.v8i2.4316

Apontamentos

  • Não há apontamentos.




Direitos autorais 2022 Liliane Rodrigues Congro

Licença Creative Commons
Esta obra da Revista de Engenharia Civil IMED está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional.

ISSN 2358-6508

 Indexadores

DOAJ.jpg   logos_DOI_CrossRef_CrossChek.png 
SHERPA-RoMEO-long-logo.gif   
 
 latindex.jpg