Best-performance of cold-formed steel stiffened trapezoidal self-supporting roof members under flexural bending due wind suction pressure

João Alfredo de Lazzari, Antonio Renato Albuquerque Bicelli, Gustavo Luz Xavier Da Costa

Abstract


Lightweight steel constructions are often used as a suitable structural solution, allowing cost reduction on the superstructure and infrastructure work. In this context, one employs the cold-formed steel profiles (CFS) and, for being slender structural elements, they become liable to buckling. Thus, this paper seeks to develop a shape solution for a cold-formed steel stiffened trapezoidal roofing member that presents the best alternative with respect to both flexural bending (caused by wind suction pressure) and obtained covering. For the stability analysis one used the software CUFSM (Constrained and Unconstrained Finite Strip Method) based on the Finite Strip Method. In addition, one used the Direct Strength Method to calculate the design bending strength. Therefore, six parametric analysis were made in order to propose a model that presents the best relation between bending strength and covering ratio. Finally, one suggests a solution for the stiffened trapezoidal roofing member that offer the best efficiency under the flexural bending due wind suction pressure and with a satisfactory covering ratio.


Keywords


Cold-formed steel; Stiffened trapezoidal self-supporting roof; Stability analysis; Direct strength method; Wind suction pressure

References


ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. NBR 14762:2010, Dimensionamento de estruturas de aço constituídas por perfis formados a frio, Rio de Janeiro, RJ, 2010, 93p.

BATISTA E. M. “Modeling Buckling Interaction”. In: Phenomenological and Mathematical Modelling of Structural Instabilities, Editors: Pignataro M., Gioncu V., International Centre for Mechanical Sciences, No. 470, SpringerWien NewYork, 2005.

CHEUNG, Y. K. The Finite Strip Method in Structural Analysis. New York, 1976.

DINIS P. B.; CAMOTIM D., “Post-buckling behaviour and strength of cold-formed steel lipped channel columns experiencing distortional/global interaction”. Computers and Structures, v. 89, p. 422–434, 2010.

FRANCO, J. M. S.; DUARTE, J. P.; BATISTA, E. M.; LANDESMANN, A. “Shape Grammar of steel cold-formed sections based on manufacturing rules”. Thin-Walled Structures, v. 79, p. 218-232, 2014.

FRANCO J.M.S.; BATISTA E.M., Buckling behavior and strength of thin-walled stiffened trapezoidal CFS under flexural bending. Thin-Walled Struct, v. 117, p. 268–281, 2017.

HANCOCK, G. J., “Local, distortional and lateral buckling of I-beams”. Journal of Structural Engineering, v. 104, Issue 11, p. 1787-1798, November 1978.

HANCOCK, G. J.; BRADFORD, M. A.; TRAHAIR, N. S. “Web distortion and flexural-torsional buckling”. Journal of the Structural Division, v. 106, Issue 7, p. 1557-1571, June 1980.

HANCOCK, G. J., “Interaction buckling in I-section columns”. Journal of the Structural Division, 1981, Vol. 107, Issue 1, p. 165-179, January 1981.

HANCOCK, G.J.; KWON, Y.B.; BERNARD, E.S. “Strength design curves for thin-walled sections undergoing distortional buckling”. Journal of Constructional Steel Research, v. 31 (2-3), p. 169-186, 1994.

HANCOCK, G. J.; MURRAY, T.; ELLIFRIT, D. S. Cold-Formed Steel Structures to the AISI Specification, Published July 27, 2001, Reference - 416 Pages, ISBN 9780824792947, 2001.

LI Z., “Buckling analysis of the finite strip method and theoretical extension of the constrained finite strip method for general boundary conditions”. Research Report, Johns Hopkins University, 2009.

LI Z.; SCHAFER B. W. “FSM stability solutions for general boundary conditions and extension of cFSM,” in The Twelfth International Conference on Civil, Structural and Environmental Engineering Computing., 2009, no. August 2016.

MELO, J. M. S. Análise da Flambagem Elástica e da Resistência de telhas autoportantes de aço formados a frio. Rio de Janeiro, 2017. Dissertação de Mestrado apresentada ao Programa de Engenharia Civil da COPPE / UFRJ, Rio de Janeiro: Universidade Federal do Rio de Janeiro, março de 2017, 101 p.

MUTIPORTE, Telhas Autoportantes, Produtos, Palhoça/SC, Disponível em: http://multiporte.com.br/produtos/. Acesso em: 25 nov. 2018.

SCHAFER, B.W.; ÁDÁNY, S. “Buckling analysis of cold-formed steel members using CUFSM: conventional and constrained finite strip methods.” Eighteenth International Specialty Conference on Cold-Formed Steel Structures, Orlando, FL. October 2006.

SCHAFER, B. “Designing Cold-Formed Steel Using the Direct Strength Method”. In: 18th International Specialty Conference on Cold-Formed Steel Structures, Orlando, Florida: University of Missouri Systems, Out. 2006.

SCHAFER, B.W., PEKÖZ, T. “Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions”. Proceedings of 14th International Specialty Conference on Cold-formed Steel Structures, St. Louis, p. 69-76, 15-16 October 1998.




DOI: https://doi.org/10.18256/2358-6508.2019.v6i2.3262

Refbacks





Copyright (c) 2020 João Alfredo Lazzari, Antonio Renato Albuquerque Bicelli, Gustavo Luz Xavier Da Costa

Licença Creative Commons
Esta obra da Revista de Engenharia Civil IMED está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional.

ISSN 2358-6508

 Indexadores

DOAJ.jpg   logos_DOI_CrossRef_CrossChek.png 
SHERPA-RoMEO-long-logo.gif   
 
 latindex.jpg