The extraction and characterization of pore water in durability studies of concrete reinforcement using electrochemical techniques

Renan Esposito Vieira, Marina Martins Mennucci, Valdecir Angelo Quarcioni, Hercílio Gomes de Melo

Abstract


The pore water of hydrated cementitious composites can provide much information on aspects related to its composition or hydration. Also, its correct extraction and characterization can allow realizing adequate durability studies associated to the composite or the metallic reinforcement, which can allow the saving of resources and time with good results. The extraction of pore water does not have a standard procedure, but it must be performed with specific care, and its composition consists mainly of sodium, potassium and calcium hydroxides, which guarantees its high pH. Considering that pore water is present inside the hydrated cementitious composite and in direct contact with the reinforcement, it is important in the study of the specific medium and directly influences it. In this context, the present article presents a brief review on aspects related to pore water (its extraction and characterization), so as its application in studies of the reinforcement corrosion through electrochemical techniques, since such methodologies are relatively easy to execute and their results are very close to the reality of reinforcements embedded in concrete.


Keywords


Pore water; Concrete reinforcement; Corrosion; Electrochemical techniques

References


ANDERS, K.A.; BERGSMA, B.P.; HANSSON, C.M.. Chloride concentration in the pore solution of Portland cement paste and Portland cement concrete. Cement and Concrete Research, v. 63, p. 35-37, 2014.

ANDERSSON, K.; ALLARD, B.; BENGTSSON, M.; MAGNUSSON, B.. Chemical composition of cement pore solutions. Cement and Concrete Research, v. 19, p. 327-323, 1989.

ANSTICE, D.J.; PAGE, C.L.; PAGE, M.M.. The pore solution phase of carbonated cement pastes. Cement and Concrete Research, v. 35, p. 377-383, 2005.

AOKI, I.V.; MELO, H.G.. Fundamentals of the spectroscopic technique of electrochemical impedance (EIE); technique allows evaluation of the efficiency of anti-corrosion methods. [Fundamentos da técnica de espectroscopia de impedância eletroquímica (EIE): Técnica permite avaliar a eficiência de métodos anticorrosivos]. Revista Metalurgia e Materiais, v. 66, p. 201-206, 2009.

ARAÚJO, J.M.. Curso de concreto armado, 4a ed., Rio Grande do Norte, Ed. Dunas, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12655: Concreto de cimento Portland – Preparo, controle, recebimento e aceitação – Procedimento. Rio de Janeiro, 23p., 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575-1: Edificações habitacionais – Desempenho – Parte 1: Requisitos Gerais. Rio de Janeiro, 71 p. 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto – Procedimento. Rio de Janeiro, 238 p. 2014.

ATAHAN, H.N.; OKTAR, O.N.; TASDEMIR, M.A.. Effects of water-cement ratio and curing time on the critical pore width of hardened cement paste. Construction and Building Materials, v. 23, p. 1196-1200, 2009.

BARNEYBACK JUNIOR, R. S.; DIAMOND, S.. Expression and analysis of pore fluids from hardened cement pastes and mortars. Cement and Concrete Research, v. 11, p. 279-285, 1981.

CÁSERES, L.; SAGÜÉS, A.A.; KRANC, S.C.; WEYERS, R.E.. In situ leaching method for determination of chloride in concrete pore water. Cement and Concrete Research, v. 36, p. 492-503, 2006.

CESEN, A.; KOSEC, T.; LEGAT, A.; BOSILJKOV, V.B.. Corrosion properties of different forms of carbon steel in simulated concrete pore water. Materials and Technology, v. 48, n. 1, p. 51-57, 2014.

CHEN, W.; DU, R.G.; YE, C.Q.; ZHU, Y.F.; LIN, C.J.. Study on the corrosion behavior of reinforcing steel in simulated concrete pore solutions using in situ Raman spectroscopy assisted by electrochemical techniques. Electrochimica Acta, v. 55, p. 5677-5682, 2010.

CHEN, X.; WU, S.. Influence of water-to-cement ratio and curing period on pore structure of cement mortar. Construction and Building Materials, v. 38, p. 804-821, 2013.

COLEMAN, N.J.; PAGE, C.L.. Aspects of the pore solution chemistry of hydrated cement paste containing metakaolin. Cement and Concrete Research, v. 27, n° 1, p. 147-154, 1997.

CYR, M.; RIVARD, P.; LABRECQUE, F.; DAIDIÉ, A.. High pressure device for fluid extraction from porous materials: application to cement-based materials. Journal of American Ceramic Society, v. 91, n. 8, p. 2653-2658, 2008.

DÍAZ, B.; JOIRET, S.; KEDDAM, M.; NÓVOA, X.R.; PÉREZ, M.C.; TAKENOUTI, H.. Passivity of iron in red mud’s water solutions. Electrochimica Acta, v. 49, p. 3039-3048, 2004.

ESPOSITO-VIEIRA, R.; MENNUCCI, M.M.; MELO, H.G.; QUARCIONI, V.A.. Aspectos sobre a extração e composição da água de poro de pasta de cimento hidratado com vista à durabilidade do concreto armado, 7° Congresso Brasileiro de Cimento. São Paulo, 2016a.

ESPOSITO-VIEIRA, R.; MENNUCCI, M.M.; MELO, H.G.; QUARCIONI, V.A.. Estudo da influência da composição da água de poro sobre a corrosão do aço CA-50, 36° Congresso Brasileiro de Corrosão. Armação dos Búzios, 2016b.

GLASSER, F. P.. The pore fluid in Portland cement: its composition and role, 11th International Congress on the Chemistry of Cement. Durban, 2003.

JOLIVET, D.; BONEN, D.M.; SHAH, S.P.. The corrosion resistance of coated steel dowels determined by impedance spectroscopy. Cement and Concrete Research, v. 37, p. 1134-1143, 2007.

KOLEVA, D.A.; BOSHKOV, N.; VAN BREUGEL, K.; WIT, J.H.W.. Steel corrosion resistance in model solutions containing waste materials. Electrochimica Acta, v. 58, p. 628-646, 2011.

KULAKOWSKI, M. P.. Contribuição ao estudo da carbonatação em concretos e argamassas compostos com adição de sílica ativa. 2002. 199 p. Tese (Doutorado) – Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2002.

LI, L.; SAGÜÉS, A.A.; POOR, N.. In situ leaching investigation of pH and nitrite concentration in concrete pore solution. Cement and Concrete Research, v. 29, p. 315-321, 1999

LIU, R.; JIANG, L.; XU, J.; XIONG, C.; SONG, Z.. Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions. Construction and Building Materials, v. 56, p. 16-20, 2014.

MEHTA, P. K.; MONTEIRO, P. J. M.. Concreto: Estrutura, Propriedades e Materiais, São Paulo, PINI, 1994.

MENNUCCI, M.M. Influência de inibidores no comportamento de corrosão de aço CA-50 para armadura de estruturas de concreto. 2006. 118 p. Dissertação (Mestrado) - Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, 2006.

MORENO, M.; MORRIS, W.; ALVAREZ, M.G.; DUFFÓ, G.S.. Corrosion of reinforcing steel in simulated concrete pore solutions – effect of carbonation and chloride content. Corrosion Science, v. 46, n. 11, p. 2681-2699, 2004.

MORENO, M. S.. Películas passivas modificadas por el empleo de inhibidores de corrosión para la protección de armaduras. Sistemas de prevención de la corrosión. 2007. 283 p. Tese (Doutorado) – Facultad de Ciencias, Universidad Autonoma de Madrid, Madri, 2007.

OLIVEIRA, C.T.A.; AGOPYAN, V.. Estudo da água de poro de pastas de cimento de escória pelo método de água de equilíbrio. São Paulo: Boletim Técnico da Escola Politécnica, Departamento de Engenharia Civil, Universidade de São Paulo, 2000. 12 p.

OLIVEIRA, C. T. A.. Água de poro de pastas de cimento de escória. 2000. 178 p. Tese (Doutorado) – Escola Politécnica, Universidade de São Paulo, São Paulo, 2000.

QUARCIONI, V.A.. Influência da cal hidratada nas idades iniciais de hidratação do cimento Portland – estudo em pasta. 2008. 188 p. Tese (Doutorado) – Escola Politécnica, Universidade de São Paulo, São Paulo, 2008.

SAGÜÉS, A.A.; MORENO, E.I.; ANDRADE, C.. Evolution of pH during in situ leaching in small concrete cavities. Cement and Concrete Research, v. 27, n° 11, p. 1747-1759, 1997.

SÁNCHEZ, M.; GREGORI, J.; ALONSO, C.; GARCÍA-JAREÑO, J.J.; TAKENOUTI, H.; VICENTE, F.. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochimica Acta, v. 52, n. 27, p. 7634-7641, 2007.

TAYLOR, H.F.W.. Cement chemistry, Nova Iorque, Thomas Telford, 1997.

TRITTHART, J.. Chloride binding in cement – I – Investigations to determine the composition of pore water in hardened cement. Cement and Concrete Research, v. 19, p. 586-594, 1989.

VAILLANT, J.M.M. Avaliação dos parâmetros de lixiviação de metais pesados em matriz de cimento Portland por meio da condutividade elétrica. 2013. 246 p. Tese (Doutorado) – Escola de Engenharia, Universidade Federal de Santa Catarina, Florianópolis, 2013.

VIEIRA, R.E.. Avaliação da passivação e corrosão do aço CA-50 usando técnicas eletroquímicas em meio de água de poro extraída de pasta de cimento Portland com adição de escória de aciaria modificada. 2017. 246 p. Dissertação (Mestrado) – Escola Politécnica, Universidade de São Paulo, São Paulo, 2017.

YE, C.Q.; HU, R.G.; DONG, S.G.; ZHANG, X.J.; HOU, R.Q.; DU, R.G.; LIN, C.J.; PAN, J.S.. EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions. Journal of Electrochemical Chemistry, v. 688, p. 275-281, 2013.

ZHANG, F.; PAN, J.; LIN, C.. Localized corrosion behavior of reinforcement steel in simulated concrete pore solution. Corrosion Science, v. 51, p. 2130-2138, 2009.




DOI: https://doi.org/10.18256/2358-6508.2020.v7i1.3359

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Renan Esposito Vieira, Marina Martins Mennucci, Valdecir Angelo Quarcioni, Hercílio Gomes de Melo

Licença Creative Commons
Esta obra da Revista de Engenharia Civil IMED está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional.

ISSN 2358-6508

 Indexadores

DOAJ.jpg   logos_DOI_CrossRef_CrossChek.png 
SHERPA-RoMEO-long-logo.gif   
 
 latindex.jpg