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Abstract
The objective of this study is to discuss the main limitations identified in the classification 
process of traffic accident severity, as based on Classification and Regression Trees models 
(CART). With this purpose, CART was used in the collection of an unbalanced database of 
road accidents, considering injury severity, categorized as accidents without victims and with 
victims (fatal and non-fatal), as the dependent variable. The variables associated with accident 
characteristics, road infrastructure and environmental conditions were used to identify the 
influence of these factors on accident severity. Although the overall classification by CART 
resulted in a high accuracy, it also indicated a low rate of accuracy in the classification of 
accidents with victims, which in turn corresponds to the rarest observations in the database. 
In addition, it was obtained a high number of decision rules, considering the number of 
categories of independent variables in the prediction process of the target variable. The results 
indicated that CART is not efficient in the study of multiple-effect phenomena, such as road 
accidents, since it does not have the potential to associate a large number of parameters, which 
restricts the analysis and interpretation of the results to the binary structure of the tree. Thus, 
an exploratory analysis of the database is suggested, when the influence of a database variable 
was analyzed in the occurrence of traffic accidents.
Keywords: Road accidents. Severity. Data Mining. Classification. Decision Tree.

Resumo
O objetivo deste estudo foi discutir as principais limitações encontradas no processo de 
classificação da severidade dos acidentes de tráfego, com base em modelos de árvore de decisão 
(CART). Para atingir este objetivo, a CART foi utilizada na mineração de um banco de dados 
desbalanceado de acidentes rodoviários, considerando a variável dependente severidade da 
lesão, a qual foi categorizada em acidentes sem vítimas e com vítimas (fatais e não fatais). Para 
tanto, foram utilizadas as variáveis associadas às características dos acidentes, à infraestrutura 
viária e às condições ambientais, com a finalidade de se identificar a influência desses fatores 
na variação da severidade dos acidentes. Embora a classificação pela CART tenha resultado em 
uma alta acurácia, a mesma forneceu baixa taxa de acerto na classificação dos acidentes com 
vítimas, que correspondem às observações mais raras do banco de dados. Além disso, resultou 
na extração de um elevado número de regras de decisão, considerando o número de categorias 
das variáveis independentes no processo de predição da variável alvo. Os resultados indicaram 
que a CART não é eficiente no estudo de efeitos multicausais como os acidentes rodoviários, 
pois não tem a potencialidade de associação de um vasto número de parâmetros, o que 
restringe a análise e interpretação dos resultados quanto à estrutura binária da árvore. Ela é 
indicada, no entanto, para a análise exploratória de bancos de dados, quando se deseja analisar 
a influência de uma categoria específica de uma variável do banco de dados na ocorrência dos 
acidentes de tráfego.
Palavras-chave: Acidentes rodoviários. Severidade da lesão. Mineração de Dados. 
Classificação. Árvore de decisão.
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1 Introduction

Road accident prevention researches aim at investigating the main factors 
associated with a road accident. These researches are fundamental to develop a 
proactive safety management in the road environment. Although the number of 
studies covering this theme has increased in recent years, there are still aspects to be 
investigated, especially in a developing country, where the majority of road accidents 
resulting in fatalities occur.

At present, researches on this issue have explored traditional methods that 
investigate the relationship between the severity of accidents and the characteristics of 
traffic and environment. These include traditional statistical tests (CHANG; WANG, 
2006), linear regression techniques (MIAOU; LUM, 1993), binomial negative regression 
(ABDEL-ATY; RADWAN, 2000; HAUER, 2007), and Logistics and Probit regression 
(KASHANI et al., 2011; MUJALLI; OÑA, 2013; SAVOLAINEN et al., 2011).

Traditional statistical tests are criticized for their inability to analyze the variables 
in relation to the observed phenomenon, which are traffic accidents (HAUER, 1997). 
The regression models require the establishment of relations between the dependent 
and independent variables, which can lead to misleading estimates of probability of 
injury severity (ABELLÁN et al., 2013; CHANG; WANG, 2006; GRISELDA et al., 
2012). Although those techniques are still in use, they are inadequate in the treatment 
of a large number of variables, are insensitive to the detection of outliers, noises and 
missing data, characteristics inherent to the accident database. (CALIENDO et al., 
2007; KARLAFTIS; VLAHOGIANNI, 2011).

Due to this problem, non-parametric data mining techniques have been explored, 
where there is no need to settle down previous relationships between the target 
(dependent) variables and the predictor variables (independent) in the classification 
and forecasting process (ABELLÁN et al., 2013; KASHANI et al., 2011; PAKGOHAR 
et al., 2011). These analytical techniques allow automatic detection of the best predictor 
variables and their respective thresholds by extracting “if-then” decision rules that can 
be used to discover attitudes that occur within a specific data set (ABELLÁN et al., 
2013; DE OÑA et al., 2013, 2014; KASHANI et al., 2011, LÓPEZ et al., 2013). Among 
the data mining techniques that have provided efficient results in relation to the classic 
regression models, the decision tree (CART - Classification and Regression Trees) is 
worth to be mentioned.

Some studies on road safety use CART for assessing the severity caused by 
different motor vehicles (CHANG; WANG, 2006; SAVOLAINEN et al., 2011; CHANG; 
CHIEN, 2013), for the identification of factors associated with traffic severity and 
accident patterns (ABELLÁN et al., 2013; DE OÑA et al., 2013; DE OÑA et al., 2014; 
GRISELDA et al., 2012; MONTELLA et al., 2011, 2012; KASHANI et al., 2011);in the 
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analysis of the effects of road geometry in road accidents (RUSSO et al., 2016). However, 
most studies detected in the literature do not discuss the challenges encountered in 
mining data from traffic accident databases.

In addition, road accident databases are generally not balanced, that is, they 
are composed of classes with just a few elements and classes with large quantity of 
elements, since they comprise events of a random nature whose parameters are not 
constant over time and space. In general, this leads to very optimistic results that do 
not fit the reality. In most cases, classifications with high accuracy are obtained for the 
majority classes and low accuracy for the minority classes. The most frequent classes in 
road accident databases are categorized as accidents without victims, while the rarest as 
with victims (fatal and non-fatal).

However, the essential variables for reducing injury severity are linked to 
the minority classes of the database, associated with the number of accidents with 
fatalities. In addition, the classifications obtained with CART are restricted to binary 
trees, which in most cases make it difficult to interpret and represent certain classes of 
the database (ABELLÁN et al., 2013).

Thus, this paper has the objective to discuss the limitations of the use of CART 
for road accident severity prediction.

In this perspective, this paper uses four years of unbalanced road accident 
database of a segment of Dom Pedro I Highway (SP-065), aiming to identify the 
limitations of the decision rules obtained with CART in the study of the relationship 
between the severity of the driver’s injury and the variables associated with the 
road environment (weather, visibility and road surface condition) and accident 
characteristics (type of accident, probable cause and time of day).

2 Materials and Methods

2.1 Road accident database

The data set used in this work was provided by the “Rota das Bandeiras” 
concessionaire and includes the database of individual accidents recorded between km 
125 and km 145 + 500 m of Dom Pedro I Highway (SP-065), in the urban area of the 
city of Campinas, Brazil. Four years of data were used (2009 to 2012).

The SP-065 highway has 145.5 km of extension and occupies the third position 
within the best highways in the national ranking. The city of Campinas occupies the 
eighth position in the national ranking of traffic deaths with a rate of 19.4 deaths/100 
thousand inhabitants, and with a Human Development Index (HDI) in 2010 of 0.805 
and a population of 1,098,630 million inhabitants (ONSV, 2014).

In order to identify the main contribution factors to road accident severity in the 
SP-065 highway, eight variables were used as described in Table 1. In this study, it was 
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built a decision tree with one main node with the target variable the accident severity, 
which was categorized into accidents no injury victims (NI) and with victims (WI), 
fatal and non-fatal.

Table 1. Description of Variables

Variables Description
Number of 

Occurrences
% Total

Severity
NI 2,150 
(76.13%)

WI 674 
(24.87%)

ACT
1. Rear-end collision 

(REC)
910 32.22 80.11 19.89

2. Head-on collision 
(HEC)

9 0.32 22.22 77.78

3. Transverse collision 
(TRC)

37 1.31 75.68 24.32

4. Lateral collision 
(SDC)

375 13.28 78.67 21.33

5. Pile-up (PUP) 373 13.21 85.79 14.21
6. Rollover (ROL) 106 3.75 53.77 46.23
7. Run over (PEC) 63 2.23 36.51 63.49

8. Overturning (OVE) 93 3.29 51.61 48.39
9. Crash – fixed or 

mobile object (CRA)
684 24.22 82.16 17.84

10. Fall - motorbikes 
and motorcycles (FAL)

174 6.16 49.43 50.57

WTC 1.Good (GO) 2358 83.50 75.06 24.94
2. Rain (RA) 334 11.83 81.74 18.26

3. Cloudy (CL) 71 2.51 84.51 15.49
4. Haze (HA) 6 0.21 83.33 16.67

5. Drizzle (DR) 55 1.95 76.36 23.64
SGC 1. Normal (NO) 1682 59.56 76.10 23.90

2. Partial (PA) 1120 39.66 76.43 23.57
3. Adverse (AD) 22 0.78 63.64 36.36

PFR 1. Descending (DE) 808 28.61 74.75 25.25
2. Level (LE) 1322 46.81 77.31 22.69

3. Ascending (AS) 694 24.58 75.50 24.50
GER 1. Straight (ST) 2514 89.02 76.49 23.51

2. Smooth Curve (SC) 143 5.06 72.73 27.27
3. Sharp Curve (SH) 167 5.91 73.65 26.35

PAV 1. Dry (DR) 2387 84.53 75.49 24.51
2. Wet (WE) 428 15.16 79.67 20.33
3. Oily (OI) 9 0.32 77.78 22.22

PER 1. Morning (MO) 1163 41.18 75.75 24.25
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Variables Description
Number of 

Occurrences
% Total

Severity
NI 2,150 
(76.13%)

WI 674 
(24.87%)

2. Afternoon (AF) 1108 39.24 75.00 25.00
3. Night (NI) 553 19.58 79.20 20.80

ACC 1. Driver (DR) 1951 69.09 76.68 23.32
2. Vehicle (VH) 82 2.90 65.85 34.15

3. Road and 
environment (RE)

122 4.32 84.43 15.57

4. Other factors (OF) 669 23.69 74.29 25.71

Legend: Accident Type (ACT); Weather Condition (WTC); Sight Condition (SGC); Road Profile 
(PFR); Road Geometry (GER); Pavement Condition (PAV); Period (PER) and Accident Cause (ACC).

The variables selected for the analysis were: type of accident (rear-end collision, frontal 
collision, transversal collision, lateral collision, pile-up, rollover, run over, overturning, 
crash fixed or mobile object, and fall of motorbike or bicycle); weather conditions (good, 
rain, cloudy, haze and drizzle); road profile (level, ascending and descending slope); road 
geometry (straight, smooth curve and sharp curve); pavement condition (dry, wet and oily); 
visibility condition (good, partial and poor); period of day (morning, afternoon and night); 
and probable cause (driver, vehicle, road/environment, others). Those variables are present 
in several traffic accidents analysis (SAVOLAINEN et al., 2011; DE OÑA et al., 2013, 2014; 
GRISELDA et al., 2012; MONTELLA et al., 2011, 2012).

Initially, the quality of the data records was analyzed. The observations with 
inconsistent, questionable or missing information were excluded from the analysis 
(total of 86 observations). Thus, the most prevalent conditions of the occurrences were 
maintained, yielding 2,824 accidents, corresponding to 97.04% of the original data set. 
Subsequently, the data were divided into two subsets, which comprised the test sample 
(10% of the data) and training (90% of the data), so that the CART algorithm was 
trained and validated by the classification process of cross-correlation (KOHAVI, 1995; 
LÜ; ZHOU, 2010).

It can be observed (Table 1) that accidents with victims represent a small portion 
of the database (23.87%) in relation to accidents without victims (76.13%), meaning that 
this database is unbalanced.

2.2 CART construction principles

The structure of the CART tree is constructed recursively with each node 
representing a variable and the branches representing their respective attributes, 
according to a threshold or decision rule. Each terminal node or leaf specifies the 
expected value for each variable. To do so, metrics were used to maximize the purity 

https://www.linguee.com.br/ingles-portugues/traducao/environment.html
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score of each node among possible input variables. In this work, the Gini metric, which 
seeks to maximize the homogeneity of the nodes in relation to the dependent variable, 
was used (PANDE; ABDEL-ATY, 2006). This metric reaches minimum values (zero) 
when all cases in a node fall into a single category (LÓPEZ et al., 2016; WEI et al., 
2017). The routine was implemented in SPSS software (Statistical Package for the Social 
Sciences), (MONTELLA et al., 2011; SINGH et al., 2016).

Thus, based on a binary structure or binary decision, the variables are grouped 
according to their importance to describe the target variable. In this case, a single rule 
is fired when an attribute is classified. In practice, a decision rule is an implication such 
as: if “A” then “B”, where A represents a set of conditions. Each condition is defined 
by a relation of type attribute equal to value, attribute greater than or equal to value, 
and attribute less than or equal to value, where the value belongs to the domain of the 
attribute under analysis.

In this study, the grouped variables correlate to the dependent variable, road 
accident severity, classified in accidents without victims (No Injury - NI) and with 
victims (With Injury - WI). Through the CART structure makes it is possible to detect 
the nodes that contain the largest possible number of occurrences related to each 
category of the independent variables.

Due to the cross-validation between the test and training samples, it is possible 
to identify the structure that best fits the data set, cutting the tree when necessary 
and excluding the nodes or branches that add little to the classification process of the 
dependent variable, that is, have little predictive value.

3 Results and discussion

Table 2 shows that the accuracy obtained in the classification process using CART 
for the database used in this study was 78.6%, which is in agreement with the literature 
(KASHANI et al., 2011; DE OÑA et al., 2013; PAKGOHAR et al., 2011; CHANG; 
CHIEN, 2013).

Table 2. Accuracy rate classification using CART

Severity level
Prediction

Accidents without 
victims

Accidents with victims
Accuracy rate 

(%)
Accidents 

without victims
2,039 111 94.8%

Accidents with 
victims

492 182 27.0%

Percent of correct 89.6% 10.4% 78.6%
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However, CART presented a low accuracy rate in the classification of accidents 
involving fatal and non-fatal victims (27%) and high accuracy rate for accidents 
without victims (94.8%), as shown in Table 2.

It can be seen from the results presented in Table 2 that of the total of 2,150 NI 
accidents, 2,039 were classified correctly (94.80%) and 111 were erroneously classified as 
WI accidents (5.20%). While of the total of 674 WI accidents, 73% were classified as NI 
accidents and only 27% were properly classified as accidents involving fatal and non-
fatal victims.

The decision tree resulted in 40 nodes, from which 21 are terminal nodes. The 
importance of each predictive or independent variable for the classification of traffic 
accident severity: ACT (100.0%), PER (70.4%), ACC (58.6%), GER (40.4%), SGC (30.8%), 
WTC (10.0%), PFR (3.8%) and PAV (2.9%).

In this study, the most important independent variable for characterization 
of road accident severity is associated with ACT, with 100% importance (Table 3). 
Subsequently, were the variables PER (70.4%), ACC (58.6%) and GER (40.4%). The 
other variables had less importance, and the variable PAV (2.9%) was the one that had 
least influence in the prediction process and, therefore, was eliminated in the CART 
adjustment process.

The results obtained with CART are shown in Figure 1 and the decision rules 
in Table 3. The binary tree structure represents the number of induced decision rules, 
which correspond to the number of terminal node. The larger the CART structure, 
the greater the number of both terminal nodes and decision rules. This characteristic 
of CART limits and restricts its application in big data searches, which have a large 
number of variables and multiple possible combinations.

In this experiment, 21 decision rules were extracted. Even though 10 nodes could 
be identified as associate to classify the WI (fatal and non-fatal victims) accidents 
(terminal nodes 7, 14, 16, 26, 33, 34, 36, 38, 39, and 40), only six of them (nodes 14, 33, 
34, 36, 38, and 39) showed the highest probability to be linked with WI accidents.

Node 33 indicates that collision type accident (frontal, transversal, lateral), pill-
up, rollover, overturning, run over, crash with fixed object and fall were those that 
culminated in WI accidents with a probability of 61.10%, in straight or with smooth 
curve road segments, under good visibility. The probable cause of the occurrence of 
these accidents was associated with driver and vehicle factors.

Node 34 considers the same types of WI accidents of node 33, but only those that 
occurred exclusively in the morning, in straight or with smooth curve road segments, 
partial and poor visibility. These accidents had a probability of 44.70% and the probable 
cause was, again, associated with the driver and the vehicle.

In node 36 the same types of WI accidents of nodes 33 and 34 are verified, 
but they occurred exclusively due to probable causes road/environment and others 
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(presence of cyclist, pedestrian and animal on the road, congestion, previous accident 
and suicide), in the morning and in straight or with smooth curve road segment, with 
probability of 51.60%.

Node 38 shows the WI accidents of the rollover type, run over, pile-up, crash 
with fixed object and fall, which occurred in the afternoon, with good, rain, or drizzle 
weather conditions, with probability of 59.70%.

Node 39 presents the same types of WI accidents as node 38, but those 
occurred at night and with a straight segment, with a probability of 30.60%. Node 14 
concentrates on the WI accidents caused by frontal collision and run over accidents in 
the afternoon and night, with probability of 86.80%.



12

Revista de Engenharia Civil IMED, Passo Fundo, vol. 6, n. 2, p. 3-17, Julho-Dezembro 2019 - ISSN 2358-6508

Figure 1. Decision Tree results

Legend: No Injury (NI); With Injury (WI); Accident Type (ACT); Weather Condition (WTC); Sight 
Condition (SGC); Road Profile (PFR); Road Geometry (GER); Pavement Condition (PAV); Period 

(PER) and Accident Cause (ACC).
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Table 3. Decision Rules
Node Classification Rules NI WI

IF N Total (%) N Total (%) Then

7 If [(ACT = 5) and (ACC = 2)] 2 50.00 2 50.00
NI and 

WI

25
If [(ACT = 5) and (ACC = 4 or 1 or 3) and 

(WTC = 1 or 2 or 3 or 4) and (SGC = 1 or 2)]
312 86.90 47 13.10 NI

26
If [(ACT = 5) and (ACC = 4 or 1 or 3) and 
(WTC = 1 or 2 or 3 or4) and (SGC = 3)]

3 60.00 2 40.00
NI and 

WI

16
If [(ACT = 5) and (ACC = 4 or 1 or 3) and 

(WTC = 5)]
3 60.00 2 40.00

NI and 
WI

27
If [(ACT = 1 or 4 or 9 or 3) and (ACC = 4 or 

1) and (PER = 1) and (SGC = 2)]
167 73.90 59 26.10 NI

28
If [(ACT = 1 or 4 or 9 or 3) and (ACC = 4 or 

1) and (PER = 1) and (SGC = 1 or 3)]
437 79.30 114 20.70 NI

29
If [(ACT = 1 or 9) and (ACC = 4 or 1) and 

(PER = 2 or 3)
689 82.80 143 17.20 NI

30
If [(ACT = 4 or 3) and (ACC = 4 or 1) and 

(PER = 2 or 3)
201 77.30 59 22.70 NI

31
If [(ACT = 1 or 4 or 9 or 3) and (ACC = 2 or 

3) and (GER = 1 or 2) and (PER = 2)]
58 90.60 6 9.40 NI

32
If [(ACT = 1 or 4 or 9 or 3) and (ACC = 2 or 

3) and (GER = 1 or 2) and (PFR = 1 or 3)]
53 82.80 11 17.20 NI

20
If [(ACT = 1 or 4 or 9 or 3) and (ACC = 2 or 

3) and (GER = 3)]
9 100.00 0 0.00 NI

33
If [(ACT = 10 or 6 or 8 or 7 or 2) and (PER = 
1) and (GANDR = 1 or 2) and (ACC = 1 or 2) 

and (SGC = 1)]
21 38.90 33 61.10

NI and 
WI

35
If [(ACT = 10 or 6 or 8 or 7 or 2) and (PER 
= 1) and (GER = 1 or 2) and (ACC = 4 or 3) 

and (PFR = 2)]
23 82.1 5 17.90 NI

36
If [(ACT = 10 or 6 or 8 or 7 or 2) and (PER 
= 1) and (GER = 1 or 2) and (ACC = 4 or 3) 

and (PFR = 1 or 3)]
15 48.40 16 51.60

NI and 
WI

12
If [(ACT = 10 or 6 or 8 or 7 or 2) and (PER= 

1) and (GER= 3)]
22 78.60 6 21.40 NI

37
If [(ACT = 10 or 6 or 8) and (PER = 2) and 

(WTC = 3)]
4 100.00 0 0.00 NI

38
If [(ACT = 10 or 6 or 8) and (PER = 2) and 

(WTC = 1 or 2 or 5)]
62 40.30 92 59.70

NI and 
WI

39
If [(ACT = 10 or 6 or 8) and (PER = 3) and 

(GER = 1)]
 34 69.40 15 30.60

NI and 
WI
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Node Classification Rules NI WI
IF N Total (%) N Total (%) Then

40
If [(ACT = 10 or 6 or 8) and (PER = 3) and 

(GER= 2 or 3)]
4 33.30 8 66.70 NI e WI

14 If [(ACT = 7 or 2) and (PER = 2 or 3) 5 13.20 33 86.80 WI
Total 2,824 accidents 2,150 674

*N = sample size; NI = without victims; WI= with victims.

The main factors contributing to the occurrence of WI accidents (nodes 14, 
33, 34, 36, 38, and 39) are associated with road characteristics such as road profile, 
environmental conditions (weather and visibility condition), time of day and the 
characteristics of accidents (type of accident and probable cause). Note that the 
accidents that are most likely to generate victims were accidents due to frontal collision 
and run over (node 14). WI accidents in road segments with sharp curve are less 
recurrent, with 21.40% probability (node 12). These accidents were of the type collision 
(frontal, transversal, lateral), overturning, rollover, run over, crash with fixed object 
and fall (bicycle and motorcycle), being more frequent in the morning. These results are 
in accordance with previous studies (GRISELDA et al., 2012).

The pavement condition variable was pruned from the final tree structure, as it 
presented little relevance to the model (Table 3). However, it is directly associated with 
environmental conditions in the segment, with the exception of accidents that occurred 
in an oily pavement condition.

NI accidents were identified with a higher likelihood of occurrence and frequency 
of data at nodes 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38 and 39. This indicates 
that NI accidents are recurring in all segments of the highway and can happen due to 
all types of accidents. They are also associated with environmental variables (weather 
and visibility condition), road characteristics (road geometry and road profile) and 
probable cause. The most recurrent NI accidents are observed at nodes 28 and 29, with 
probability of occurrence of 79.30% and 82.80%, respectively. These accidents were 
collision type (rear, transversal and lateral) and crash with fixed object, with probable 
cause associated with the driver and other ones (congestion and previous accident), 
at different periods of the day (morning, afternoon, and night) and with good or bad 
visibility condition. The driver variable is in accordance to the previous studies of 
Abdel-Aty e Radwan (2000).

4 Conclusions

The results obtained with the CART algorithm express the influence on road 
accident severity classification of the variables related to road infrastructure and 
environmental conditions. In the classification process, although an accuracy 



15

Revista de Engenharia Civil IMED, Passo Fundo, vol. 6, n. 2, p. 3-17, Julho-Dezembro 2019 - ISSN 2358-6508

compatible with the values found in the literature (78.6%) was obtained, it was 
verified that the accuracy rate for WI accidents (27%) was much lower than the NI 
accidents accuracy rate (94.8%). This is due to fewer observations related to WI in the 
road accident database, which means that the database is unbalanced. Due to this 
characteristic, it is recommended in road accident severity classification studies that 
databases be balanced in order to properly train the classifier employed by different 
class classification approaches.

Since the classification process with CART is based on set of attributes where each 
internal node corresponds to a test on the values of the attributes of a given variable, 
it is expected that a balanced database will produce more consistent results with good 
accuracy.

In the context of Road Safety, CART can be efficient when analyzing the impact 
of a specific category of a particular dependent variable on road accident severity, such 
as the driver’s profile (age, gender), type of vehicle (motorcycles, trucks, vehicles), level 
of drunkenness (high, low, medium), among others. However, CART is not efficient 
for the analysis of multi-causal effects associated with the study of road accident. For 
these cases, it is indicated the elaboration of a CART for each dependent variable, with 
a smaller and significant number of decision rules.

In the spatial scope of the problem, it would also be interesting to add 
neighborhood relations based on measures of similarity, since the location of accidents 
can affect the probability of road accident severity.

For future work, more refined data mining techniques are recommended, based 
on network structures, in order to extract not only exploratory and visual information 
from the database, but also to identify, in a more efficient way, the main factors, which 
when combined, contribute to the occurrence of road accidents.
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